Archive for the ‘Did you know that…?’ Category

How Secure Is Your Password? A Friendly Advice from a Company That Breaks Passwords

Sunday, February 1st, 2015

A Practical Guide for the Rest of Us

How many passwords does an average Joe or Jane has to remember? Obviously, it’s not just one or two. Security requirements vary among online services, accounts and applications, allowing (or disallowing) certain passwords. Seven years ago, Microsoft determined in a study that an average user  had 6.5 Web passwords, each of which is shared across about four different websites. They’ve also determined that, back then, each user had about 25 accounts that required passwords, and typed an average of 8 passwords per day.

If i got a penny every time i forgot my pwd, I'd be a millionaire

It didn’t change much in 2012. Another study determined that an average person has 26 online accounts, but uses only five passwords to keep them secure, typing about 10 passwords per day. CSID has a decent report on password usage among American consumers, discovering that as many as 54% consumers have five or less passwords, while another 28% reported using 6 to 10 passwords. Only 18% had more than 10 passwords. 61% of all questioned happily reuse their passwords over and over.

This obviously indicates a huge risk, making all these people susceptible to attacks on their passwords. Why do we have this situation, and what should one do to keep one’s life secure against hacker attacks? Let’s try to find out.

Passwords: Plagued with Problems

Passwords are the most common way of securing the many aspects of our lives. However, password-based protection is plagued with problems. Let’s have a look at why passwords are less than perfect when it comes to security. (more…)

Apple’s Take on Government Surveillance: On Its Customers’ Side

Tuesday, January 27th, 2015

Everyone must comply with government requests to disclose information. How far should one go when disclosing such information? This is up to the company. In a recent trend, several big IT companies including Apple, Facebook, Google and Microsoft among others teamed up to propose a change in US legislatures concerning governments spying on its citizens. The reform would make government surveillance “consistent with established global norms of free expression and privacy and with the goals of ensuring that government law enforcement and intelligence efforts are rule-bound, narrowly tailored, transparent, and subject to oversight”.

(more…)

Elcomsoft Phone Breaker Update: Improved iCloud Acquisition, Two-Factor Authentication and Stronger Brute Force

Wednesday, December 17th, 2014

We are excited to announce an update to one of our oldest mobile forensic tools, Elcomsoft Phone Breaker. In this release we mostly targeted iCloud acquisition, although we’ve made some changes to the password recovery algorithm targeting iOS offline backups. All in all, the new tool can be used under a wider range of circumstances, squeezes more juice of your existing acceleration hardware and adds support for newest and greatest AMD and NVIDIA boards.

(more…)

Everything You Always Wanted to Know About iTunes and iCloud Backups But Were Afraid to Ask

Monday, March 31st, 2014

Do you think you know everything about creating and using backups of Apple iOS devices? Probably not. Our colleague and friend Vladimir Bezmaly (MVP Consumer security, Microsoft Security Trusted Advisor) shares some thoughts, tips and tricks on iTunes and iCloud backups.

iPhone Backups

Mobile phones are everywhere. They are getting increasingly more complex and increasingly more powerful, producing, consuming and storing more information than ever. Today’s smart mobile devices are much more than just phones intended to make and receive calls. Let’s take Apple iPhone. The iPhone handles our mail, plans our appointments, connects us to other people via social networks, takes and shares pictures, and serves as a gaming console, eBook reader, barcode scanner, Web browser, flashlight, pedometer and whatnot. As a result, your typical iPhone handles tons of essential information, keeping the data somewhere in the device. But what if something happens to the iPhone? Or what if nothing happens, but you simply want a newer-and-better model? Restoring the data from a backup would be the simplest way of initializing a new device. But wait… what backup?

Users in general are reluctant to make any sort of backup. They could make a backup copy once after reading an article urging them to back up their data… but that would be it. Apple knows its users, and decided to explore the path yet unbeaten, making backups completely automatic and requiring no user intervention. Two options are available: local backups via iTunes and cloud backups via Apple iCloud.

(more…)

I’ve Got the iTunes Backup from the iCloud. What Shall I Do Now?

Tuesday, September 3rd, 2013

This is the second part of Elcomsoft Phone Password Breaker Enhances iCloud Forensics and Speeds Up Investigations article.

Extracting the content of an iPhone is only half the job. Recovering meaningful information from raw data is yet another matter. The good news is there are plenty of powerful tools providing iOS analytics. The bad news? You’re about to spend a lot of time analyzing the files and documenting the findings. Depending on the purpose of your investigation, your budget and your level of expertise using forensic tools, you may want using one tool or the other. Let’s see what’s available.

(more…)

Apple Two-Factor Authentication and the iCloud

Thursday, May 30th, 2013

Some time ago, I wrote a blog post on hacked Yahoo!, Dropbox and Battle.net accounts, and how this can start a chain reaction. Companies seem to begin recognizing the threat, and are starting to protect their customers with today’s cutting edge security: two-factor authentication.

A word on two-factor authentication. In Europe, banks and financial institutions have been doing this for decades. Clients needed to enter an extra piece of information from a trusted media in addition to their account credentials in order to authorize a transaction such as transferring money out of their account. For many years, bank used printed lists of numbered passcodes serving as Transaction Authentication Numbers (TAN). When attempting to transfer money out of your bank account, you would be asked to enter a passcode number X. If you did not come up with the right code, the transfer would not execute. There are alternatives to printed TAN’s such as single-use passwords sent via a text message to a trusted mobile number or interactive TANs generated with a trusted crypto token or a software app installed onto a trusted phone.

Online services such as Microsoft or Google implement two-factor authentication in a different manner, asking their customers to come up with a second piece of an ID when attempting to access their services from a new device. This is supposed to prevent anyone stealing your login and password information from gaining access to your account from devices other than your own, verified PC, phone or tablet.

The purpose of two-factor authentication is to prevent parties gaining unauthorized access to your account credentials from taking any real advantage. Passwords are way too easy to compromise. Social engineering, keyloggers, trojans, password re-use and other factors contribute to the number of accounts compromised every month. An extra step in the authorization process involving a trusted device makes hackers lives extremely tough.

At this very moment, two-step authentication is being implemented by major online service companies. Facebook, Google and Microsoft already have it. Twitter is ‘rolling out two-factor authentication too.

A recent story about a journalist’s Google, Twitter and Apple accounts compromised and abused seems to have Apple started on pushing its own implementation of two-factor authentication.

Two-Factor Authentication: The Apple Way

Apple’s way of doing things is… different. Let’s look at their implementation of two-factor authentication.

(more…)

iCloud backups inside out

Monday, February 25th, 2013

It’s been a while since we released the new version of Elcomsoft Phone Password Breaker that allows downloading backups from iCloud (read the press release). Many customers all over the world are already using this new feature intensively, but we still get many questions about its benefits, examples of cases when it can be used and how to use it properly. We also noticed many ironic comments in different forums (mostly from users without any experience in using iOS devices and so have no idea what iCloud backups actually are, I guess), saying that there is nothing really new or interesting there, because anyone with Apple ID and password can access the data stored in iCloud backup anyway.

Well, it seems some further explanation is needed. If you are already using EPPB (and this feature in particular) you will find some useful tips for future interaction with iCloud, or even if you don’t have an iOS device (you loser! just kidding :)) please go ahead and learn how iCloud can be helpful and dangerous at the same time. (more…)

iCloud: Making Users Spy on Themselves

Thursday, February 21st, 2013

Apple iCloud is a popular service providing Apple users the much needed backup storage space. Using the iCloud is so simple and unobtrusive that more than 190 million customers (as of November, 2012) are using the service on regular basis.

Little do they know. The service opens governments a back door for spying on iOS users without them even knowing. ElcomSoft researchers discovered that information stored in the iCloud can be retrieved by anyone without having access to a physical device, provided that the original Apple ID and password are known. The company even built the technology for accessing this information in one of its mobile forensic products, Elcomsoft Phone Password Breaker, allowing investigators accessing backup copies of the phone’s content via iCloud services.

(more…)

ElcomSoft Decrypts BitLocker, PGP and TrueCrypt Containers

Thursday, December 20th, 2012

BitLocker, PGP and TrueCrypt set industry standard in the area of whole-disk and partition encryption. All three tools provide strong, reliable protection, and offer a perfect implementation of strong crypto.

Normally, information stored in any of these containers is impossible to retrieve without knowing the original plain-text password protecting the encrypted volume. The very nature of these crypto containers suggests that their target audience is likely to select long, complex passwords that won’t be easy to guess or brute-force. And this is exactly the weakness we’ve targeted in our new product: Elcomsoft Forensic Disk Decryptor.

The Weakness of Crypto Containers

The main and only weakness of crypto containers is human factor. Weak passwords aside, encrypted volumes must be mounted for the user to have on-the-fly access to encrypted data. No one likes typing their long, complex passwords every time they need to read or write a file. As a result, keys used to encrypt and decrypt data that’s being written or read from protected volumes are kept readily accessible in the computer’s operating memory. Obviously, what’s kept readily accessible can be retrieved near instantly by a third-party tool. Such as Elcomsoft Forensic Disk Decryptor.

Retrieving Decryption Keys

In order to access the content of encrypted containers, we must retrieve the appropriate decryption keys. Elcomsoft Forensic Disk Decryptor can obtain these keys from memory dumps captured with one of the many forensic tools or acquired during a FireWire attack. If the computer is off, Elcomsoft Forensic Disk Decryptor can retrieve decryption keys from a hibernation file. It’s important that encrypted volumes are mounted at the time a memory dump is obtained or the PC goes to sleep; otherwise, the decryption keys are destroyed and the content of encrypted volumes cannot be decrypted without knowing the original plain-text password.

“The new product includes algorithms allowing us to analyze dumps of computers’ volatile memory, locating areas that contain the decryption keys. Sometimes the keys are discovered by analyzing byte sequences, and sometimes by examining crypto containers’ internal structures. When searching for PGP keys, the user can significantly speed up the process if the exact encryption algorithm is known.”

It is essential to note that Elcomsoft Forensic Disk Decryptor extracts all the keys from a memory dump at once, so if there is more than one crypto container in the system, there is no need to re-process the memory dump.

Using forensic software for taking snapshots of computers’ memory is nothing new. The FireWire attack method existed for many years, but for some reason it’s not widely known. This method is described in detail in many sources such as http://www.securityresearch.at/publications/windows7_firewire_physical_attacks.pdf or http://www.hermann-uwe.de/blog/physical-memory-attacks-via-firewire-dma-part-1-overview-and-mitigation

The FireWire attack method is based on a known security issue that impacts FireWire / i.LINK / IEEE 1394 links. One can take direct control of a PC or laptop operating memory (RAM) by connecting through a FireWire. After that, grabbing a full memory dump takes only a few minutes. What made it possible is a feature of the original FireWide/IEEE 1394 specification allowing unrestricted access to PC’s physical memory for external FireWire devices. Direct Memory Access (DMA) is used to provide that access. As this is DMA, the exploit is going to work regardless of whether the target PC is locked or even logged on. There’s no way to protect a PC against this threat except explicitly disabling FireWire drivers. The vulnerability exists for as long as the system is running. There are many free tools available to carry on this attack, so Elcomsoft Forensic Disk Decryptor does not include a module to perform one.

If the computer is turned off, there are still chances that the decryption keys can be retrieved from the computer’s hibernation file. Elcomsoft Forensic Disk Decryptor comes with a module analyzing hibernation files and retrieving decryption keys to protected volumes.

Complete Decryption and On-the-Fly Access

With decryption keys handy, Elcomsoft Forensic Disk Decryptor can go ahead and unlock the protected disks. There are two different modes available. In complete decryption mode, the product will decrypt everything stored in the container, including any hidden volumes. This mode is useful for collecting the most evidence, time permitting.

In real-time access mode, Elcomsoft Forensic Disk Decryptor mounts encrypted containers as drive letters, enabling quick random access to encrypted data. In this mode files are decrypted on-the-fly at the time they are read from the disk. Real-time access comes handy when investigators are short on time (which is almost always the case).

We are also adding True Crypt and Bitlocker To Go plugins to Elcomsoft Distributed Password Recovery, enabling the product to attack plain-text passwords protecting the encrypted containers with a range of advanced attacks including dictionary, mask and permutation attacks in addition to brute-force.

Unique Features

The unique feature of Elcomsoft Forensic Disk Decryptor is the ability to mount encrypted disks as a drive letter, using any and all forensic tools to quickly access the data. This may not seem secure, and may not be allowed by some policies, but sometimes the speed and convenience is everything. When you don’t have the time to spend hours decrypting the entire crypto container, simply mount the disk and run your analysis tools for quick results!

More Information

More information about Elcomsoft Forensic Disk Decryptor is available on the official product page at http://www.elcomsoft.com/efdd.html

ElcomSoft Breaks Into MS Office 2013

Wednesday, September 26th, 2012

ElcomSoft has recently updated two products recovering Microsoft Office passwords with Office 2013 support. Elcomsoft Advanced Office Password Recovery and Elcomsoft Distributed Password Recovery received the ability to recover plain-text passwords used to encrypt documents in Microsoft Office 2013 format. Initially, we are releasing a CPU-only implementation, with support for additional hardware accelerators such as ATI and NVIDIA video cards scheduled for a later date.

Stronger Protection

In version 2013, Microsoft used an even tighter encryption compared to the already strong Office 2010. To further strengthen the protection, Microsoft replaced SHA1 algorithm used for calculating hash values with a stronger and slower SHA512. In addition, the encryption key is now 256 bits long, while the previous versions of Microsoft Office were using ‘only’ 128 bits. While the length of the encryption key has no direct effect on the speed of password recovery, the slower and stronger hash calculation algorithm does. It’s obvious that Microsoft is dedicated to making subsequent Office releases more and more secure.

No Brute Force

While we continue supporting brute force attacks, brute force becomes less and less efficient with every new release of Microsoft Office even with full-blown hardware acceleration in place. Office 2013 sets a new standard in document encryption, pretty much taking brute force out of the question. This is why we continue relying on a variety of smart attacks that include a combination of dictionary attacks, masks and advanced permutations. Brute-forcing SHA512 hashes with 256-bit encryption key is a dead end. Smart password attacks are pretty much the only way to go with Office 2013.