Archive for the ‘General’ Category

Accelerating Password Recovery: the Addition of FPGA

Tuesday, July 17th, 2012

Back in 2008, ElcomSoft started using consumer-grade video cards to accelerate password recovery. The abilities of today’s GPU’s to perform massively parallel computations helped us greatly increase the speed of recovering passwords. Users of GPU-accelerated ElcomSoft password recovery tools were able to see the result 10 to 200 times (depending on system configuration) sooner than the users of competing, non-accelerated products.

Today, ElcomSoft introduced support for a new class of acceleration hardware: Field Programmable Gate Arrays (FPGAs) used by Pico Computing in its hardware acceleration modules. Two products have received the update: Elcomsoft Phone Password Breaker and Elcomsoft Wireless Security Auditor, enabling accelerated recovery of Wi-Fi WPA/WPA2 passwords as well as passwords protecting Apple and Blackberry offline backups. In near future, Pico FPGA support will be added to Elcomsoft Distributed Password Recovery.

With FPGA support, ElcomSoft products now support a wide range of hardware acceleration platforms including Pico FPGA’s, OpenCL compliant AMD video cards, Tableau TACC, and NVIDIA CUDA compatible hardware including conventional and enterprise-grade solutions such as Tesla and Fermi.

Hardware Acceleration of Password Recovery
Today, no serious forensic user will use a product relying solely on computer’s CPU. Clusters of GPU-accelerated workstations are employed to crack a wide range of passwords from those protecting office documents and databases to passwords protecting Wi-Fi communications as well as information stored in Apple and BlackBerry smartphones. But can consumer-grade video cards be called the definite ‘best’ solution?

GPU Acceleration: The Other Side of the Coin
Granted, high-end gaming video cards provide the best bang for the buck when it comes to buying teraflops. There’s simply no competition here. A cluster of 4 AMD or NVIDIA video cards installed in a single chassis can provide a computational equivalent of 500 or even 1000 dual-core CPU’s at a small fraction of the price, size and power consumption of similarly powerful workstation equipped only with CPU’s.

However, GPU’s used in video cards, including enterprise-grade solutions such as NVIDIA Tesla, are not optimized for the very specific purpose of recovering passwords. They still do orders of magnitude better than CPU’s, but if one’s looking for a solution that prioritizes absolute performance over price/performance, there are alternatives.

 How Would You Like Your Eggs?
A single top of the line video card such as AMD Radeon 7970 consumes about 300 W at top load. It generates so much heat you can literally fry an egg on it! A cluster of four gaming video cards installed into a single PC will suck power and generate so much heat that cooling becomes a serious issue.

Accelerating Password Recovery with FPGAs
High-performance password cracking can be achieved with other devices. Field Programmable Gate Arrays (FPGAs) will fit the bill just perfectly. A single 4U chassis with a cluster of FPGA’s installed can offer a computational equivalent of over 2,000 dual-core processors.

The power consumption of FPGA-based units is dramatically less than that of consumer video cards. For example, units such as Pico E-101 draw measly 2.5 W. FPGA-based solutions don’t even approach the level of power consumption and heat generation of gaming video cards, running much cooler and comprising a much more stable system.

GPU vs. FPGA Acceleration: The Battle
Both GPU and FPGA acceleration approaches have their pros and contras. The GPU approach offers the best value, delivering optimal price/performance ratio to savvy consumers and occasional users. Heavy users will have to deal with increased power consumption and heat generation of GPU clusters.

FPGA’s definitely cost more per teraflop of performance. However, they are better optimized for applications such as password recovery (as opposed to 3D and video calculations), delivering significantly better performance – in absolute terms – compared to GPU-accelerated systems. FPGA-based systems generate much less heat than GPU clusters, and consume significantly less power. In addition, an FPGA-based system fits perfectly into a single 4U chassis, allowing forensic users building racks stuffed with FPGA-based systems. This is the very reason why many government, intelligence, military and law enforcement agencies are choosing FPGA-based systems.

Adobe Acrobat X Support in Advanced PDF Password Recovery

Thursday, June 14th, 2012

We updated Advanced PDF Password Recovery to add Acrobat X support, recovering the original password and instantly removing various access restrictions in PDF documents produced by Adobe Acrobat X.

Removing PDF Access Restrictions

Many PDF documents come with various access restrictions that disable certain features such as the ability to print documents, copy selected text or save filled forms. If a PDF file can be opened without a password, the new release can instantly unlock restricted PDF files produced by Adobe Acrobat X even if the original password is not known.

(more…)

Explaining that new iCloud feature

Tuesday, May 29th, 2012

It’s been almost two weeks since we have released updated version of Elcomsoft Phone Password Breaker that is capable of downloading backups from the iCloud and we have seen very diverse feedback ever since. Reading through some articles or forum threads it became quite evident that many just do not understand what we have actually done and what are the implications. So I am taking another try to clarify things.

(more…)

Get More Apples :)

Wednesday, May 16th, 2012

Let’s play a game! Rules are simple – just try to catch as much apples as you can into your police cap. Good catchers will get 25% discount for the new version of Elcomsoft Phone Password Breaker. Your challenge is just 100 apples, so let’s play! :)

ElcomSoft Helps Investigate Crime Providing Yet Another Way to Break into iOS with iCloud Attack

Tuesday, May 15th, 2012

 

Elcomsoft Phone Password Breaker and Elcomsoft iOS Forensic Toolkit have been around for a while, acquiring user information from physical iPhone/iPad devices or recovering data from user-created offline backups. Both tools required the investigator to have access to the device itself, or at least accessing a PC with which the iOS device was synced at least once. This limited the tools’ applications to solving the already committed crime, but did little to prevent crime that’s just being planned.

The new addition to the family of iOS acquisition tools turns things upside down. Meet updated Elcomsoft Phone Password Breaker – a tool that can now retrieve information from suspects’ phones without them even noticing. The newly introduced attack does not need investigators to have access to the phone itself. It doesn’t even require access to offline backups produced by that phone. Instead, the new attack targets an online, remote storage provided by Apple. By attacking a remote storage, the updated tool makes it possible watching suspects’ iPhone activities with little delay and without alerting the suspects. In fact, the tool can retrieve information from the online storage without iPhone users even knowing, or having a chance to learn about the unusual activity on their account. (more…)

New Features in EPPB

Thursday, April 5th, 2012

When it comes to adding new features to our products we try to focus on our customers’ needs and it is my pleasure today to announce a preview (or beta) version of our Phone Password Breaker tool with new features requested (or inspired) by our valued customers users :)

Here’s the wrap-up of new features.

(more…)

iOS DFU Mode Starter: Automating the Apple Dance

Sunday, April 1st, 2012

Switching iPhones into a DFU (Device Firmware Update) mode is a hassle. Power off, press that and hold those that many seconds, release this but continue holding that until hopefully something happens on the phone. Many iPhone users have major troubles switching their iPhones into DFU mode. Luckily for them, they don’t have to do the Apple Dance too often.

Criminal investigators, police officers and workers of the intelligence are not as lucky. They have dozens of iPhones to process every day, hundreds every week. “When I get an iPhone, I only have two hours”, says a police officer who’s name we cannot disclose. “In 120 minutes, I have to acquire and process information from that phone. Honestly, I can rarely complete it in a proper way.”

Here at ElcomSoft, we’re trying to do everything to make the life of investigators easier. Performing a physical acquisition with EIFT, which is the only proper way to capture everything in the phone, only takes 20 to 40 minutes depending on the model. But here comes another pitfall. Unlike pickpockets and fraudsters with long, thin fingers, police officers have big hands and firm, strong fingers. Performing the Apple Dance is extremely frustrating and almost physically painful. “I have to try and try before I can twist my fingers to hold those damn buttons”, confesses another police officer. “These damn things are too small and slick”.

Visiting the EuroForensics conference a few days ago, I was demonstrating how easy it was to switch an iPhone into DFU mode. I did it right the first time, but on a second try I failed miserably. “I’m too old for this shtuff”, commented yet another visitor whose badge simply read “Special Agent”.

I passed my concerns to ElcomSoft R&D department, and they built a mockup of an ingenious device automating this sort of things. They called it “iOS DFU Mode Starter”. As a first mockup, it’s not yet perfect. It requires careful placement of the device, and you have to plug a USB cable by hand. Other than that, iOS DFU Mode Starter can switch the device into Debug Firmware Update mode with 100% reliability. “It’s almost infallible”, says Andrey Belenko, ElcomSoft leading researcher. “And it was incredible fun to build”.

Here’s a video demonstrating how the new device works:

 

Why LEGO?

I was shocked at first when I saw the robot. A LEGO? Are you guys kidding me? It turned out our R&D guys were serious as ever. Here’s what Andrey Belenko has to say about this robot.

“Constructing mockups and early prototypes with LEGO bricks is commonplace for building robots. Honestly, LEGO blocks are a godsend to all robot builders. Don’t be fooled with the look of the thing; these bricks are a serious prototyping tool.”

“LEGO bricks hold together amazingly well under low and medium load. LEGO blocks come in a wide assortment of shapes and sizes. They give a tight fit, they are reusable, and they save us a lot of time when prototyping. We’re not building an industrial piece; this robot simply handles a modern electronic device. No force is required.”

Whether or not this device goes into production, and what the price is going to be like if it does is yet to be determined.

Mobile password keepers don’t keep the word

Friday, March 16th, 2012

We’ve analyzed 17 popular password management apps available for Apple iOS and BlackBerry platforms, including free and commercially available tools, and discovered that no single password keeper app provides a claimed level of protection. None of the password keepers except one are utilizing iOS or BlackBerry existing security model, relying on their own implementation of data encryption. ElcomSoft research shows that those implementations fail to provide an adequate level of protection, allowing an attacker to recover encrypted information in less than a day if user-selectable Master Password is 10 to 14 digits long.

The Research

Both platforms being analyzed, BlackBerry and Apple iOS, feature comprehensive data security mechanisms built-in. Exact level of security varies depending on which version of Apple iOS is used or how BlackBerry users treat memory card encryption. However, in general, the level of protection provided by each respective platform is adequate if users follow general precautions.

The same cannot be said about most password management apps ElcomSoft analyzed. Only one password management app for the iOS platform, DataVault Password Manager, stores passwords in secure iOS-encrypted keychain. This level of protection is good enough by itself; however, that app provides little extra protection above iOS default levels. Skipping the complex math (which is available in the original whitepaper), information stored in 10 out of 17 password keepers can be recovered in a day – guaranteed if user-selectable master password is 10 to 14 digits long, depending on application. What about the other seven keepers? Passwords stored in them can be recovered instantly because passwords are either stored unencrypted, are encrypted with a fixed password, or are simply misusing cryptography.

Interestingly, BlackBerry Password Keeper and Wallet 1.0 and 1.2 offer very little protection on top of BlackBerry device password. Once the device password is known, master password(s) for Wallet and/or Password Keeper can be recovered with relative ease.

In the research we used both Elcomsoft Phone Password Breaker and Elcomsoft iOS Forensic Toolkit.

Recommendations

Many password management apps offered on the market do not provide adequate level of security. ElcomSoft strongly encourages users not to rely on their advertised security, but rather use iOS or BlackBerry built-in security features.

In order to keep their data safe, Apple users should set up a passcode and a really complex backup password. The unlocked device should not be plugged to non-trusted computers to prevent creation of pairing. Unencrypted backups should not be created.

BlackBerry users should set up a device password and make sure media card encryption is off or set to “Encrypt using Device Key” or “Encrypt using Device Key and Device Password” in order to prevent attackers from recovering device password based on what’s stored on the media card. Unencrypted device backups should not be created.

The full whitepaper is available at http://www.elcomsoft.com/WP/BH-EU-2012-WP.pdf

Updated iOS Forensic Toolkit Ready for iOS 5.1, Tries Top 100 Common Passcodes First

Monday, March 12th, 2012

Today, we released an updated version of iOS Forensic Toolkit. It’s not as much of an update to make big news shout, but the number of improvements here and there warrants a blog post, and is definitely worth upgrading to if you’re dealing with multiple iPhones on a daily basis.

The newly updated Elcomsoft iOS Forensic Toolkit now supports iOS 5.1 and adds a number of small and not-so-small enhancements to the already sound package. The ability to try top 100 most common passcodes gives a chance to recover a passcode in a matter of minutes. There’s one more thing new with the updated iOS Forensic Toolkit: an iPhone booted with iOS Forensic Toolkit now displays a small ElcomSoft logo instead of the default one.

Top 100 Passcodes

We’ve seen lots of iPhones. Most are locked with simple, easy to remember passcodes. We were able to compile a list of most commonly used passcodes. There are the obvious ones like 1111, 2222, 1234, 5555, vertical raw 2580, and there are many ‘convenience’ passcodes that are just easier to remember or enter on the iPhone’s screen. There’s a whole range of passcodes representing possible dates significant to iPhone owners; these passcodes range from early 1930 to 2020. The updated iOS Forensic Toolkit will now try these passcodes before launching a brute-force attack.

How good are the chances? A recent study demonstrated that as many as 15% of all passcode sets are represented by only 10 different passcodes (out of 10,000 possible combinations). That’s 1 in 7 iPhones unlocked within minutes or even seconds.

New Logo

iPhones booted by iOS Forensic Toolkit will now display ElcomSoft logo when loading. Not a big deal, but a nice and pleasant for us visual effect :)

We also added a few other improvements and enhancements here and there, making the new version a recommended update.

Breaking Wi-Fi Passwords: Exploiting the Human Factor

Thursday, March 8th, 2012

Attacking Wi-Fi passwords is near hopeless if a wireless hotspot is properly secured. Today’s wireless security algorithms such as WPA are using cryptographically sound encryption with long passwords. The standard enforces the use of passwords that are at least 8 characters long. Encryption used to protect wireless communications is tough and very slow to break. Brute-forcing WPA/WPA2 PSK passwords remains a hopeless enterprise even if a horde of GPU’s is employed. Which is, in general, good for security – but may as well inspire a false sense of security if a weak, easy to guess password is selected.

Elcomsoft Wireless Security Auditor is one tool to test how strong the company’s Wi-Fi passwords are. After checking the obvious vulnerabilities such as open wireless access points and the use of obsolete WEP encryption, system administrators  will use Wireless Security Auditor that tries to ‘guess’ passwords protecting the company’s wireless traffic. In previous versions, the guessing was limited to certain dictionary attacks with permutations. The new version gets smarter, employing most of the same guessing techniques that are likely to be used by an intruder.

Humans are the weakest link in wireless security. Selecting a weak, easy to guess password easily overcomes all the benefits provided by extensive security measures implemented in WPA/WPA2 protection. In many companies, employees are likely to choose simple, easy to remember passwords, thus compromising their entire corporate network.

The New Attacks
The new attacks help Elcomsoft Wireless Security Auditor recover weak passwords, revealing existing weaknesses and vulnerabilities in companies’ wireless network infrastructure.

Word Attack
If it’s known that a password consists of a certain word, the Word attack will attempt to recover that password by trying heavily modified versions of that word. This attack only has two options: you can set the source word and you can disable all permutations except changing the letter case. In addition, we can apply permutations to the source word first, forming a small dictionary; then perform a full dictionary attack, applying various permutations to all words from the newly formed list.

Mask Attack
Certain passwords or password ranges may be known. The mask attack allows creating a flexible mask, brute-forcing the resulting limited combination of passwords very quickly. The masks can be very flexible. One can specify placeholders for static characters, letter case, as well as full or limited range of special characters, digits or letters. Think of the Mask attack as an easy (and very flexible) way to check all obvious passwords from Password000 to Password999.

Combination Attack
You have two dictionaries. We combine each word from one dictionary with every word from another. By default, the words are combined as is, but you can increase the number of possible combinations by allowing delimiters (such as space, underscore and other signs), checking upper/lower case combinations or using extra mutations.

Hybrid Attack
This is one of the more interesting attacks out there. In a sense, Hybrid attacks come very close to how real human intruders think. The Hybrid attacks integrates ElcomSoft’s experience in dealing with password recovery. We’ve seen many (think thousands) weak passwords, and were able to generalize ways people are making them. Dates, names, dictionary words, phrases and simple character substitutions are the most common things folks do to make their passwords ‘hard to guess’. The new Hybrid attack will handle the ‘hard’ part.

Technically, the Hybrid attack uses one or more dictionaries with common words, and one or more .rul files specifying mutation rules. We’re supplying a few files with the most commonly used mutation rules:

Common.rul – integrates the most commonly used mutations. In a word, we’ve seen those types of passwords a lot, so we were able to generalize and derive these rules.
Dates.rul – pretty much what it says. Combines dictionary words with dates in various formats. This is a pretty common way to construct weak passwords.
L33t.rul – the “leet” lingo. Uses various combinations of ASCII characters to replace Latin letters. C001 hackers make super-strong passwords with these… It takes minutes to try them all.
Numbers.rul – mixes dictionary words with various number combinations.